

Luminosity Measurement

Delivered & Live luminosity

- L with inelastic pp
- ♣ L with W->lv
- L information
- Conclusion
 - Luminosity Group
 - D. Acosta
 - S. Klimenko
 - J. Konigsberg
 - A. Korytov
 - G. Mitselmakher
 - V. Necula
 - A. Pronko
 - > A. Sukhanov
 - D. Tsybychev
 - > S.M. Wang
 - M. Dittmar
 - A-S Nicollerat

Inelastic PPbar

Process of inelastic PPbar scattering (measured with CLC)

- Large x-section: $\sigma_{inel} = 60.4 \pm 1.4 mb$ (CDF)
 - \rightarrow Total x-section is measured also by E710 and E811 (2.8 σ discrepancy with CDF)
 - →Physics groups should decide what to use

$$R_{pp} = \mu_{clc} \cdot f_{BC} = \sigma_{inel} \cdot \varepsilon_{clc} \cdot L$$

L – luminosity f_{bc} – Bunch Crossing rate σ_{inel} – inelastic x-section μ_{clc} – # of pp /BC from CLC ε_{clc} – CLC acceptance

- \square Measurement of μ_{clc}
 - Counting of BC with no interactions:

$$\rightarrow$$
 currently implemented for online & offline L

$$\mu_{clc} = \langle N_{hits/BC} \rangle / \langle N_{hits/p\overline{p}} \rangle$$

 $\mu_{clc} = -\ln(N_{zeroBC}/N_{totalBC})$

$$\mu_{clc} = \sum A_i / \left\langle A_{p\overline{p}} \right\rangle$$

Instantaneous & Integrated L with CLC

Peak L =
$$\cdot 10^{31} cm^{-2} s^{-1}$$

Integrated L =
$$pb^{-1}$$

CLC Luminosity Uncertainty

very preliminary

■ Main systematic errors	expected	current
• Inelastic Ppbar x-section	2.5%	2.5%
• CLC acceptance	~2%	<10.0%
• Detector instability	<1%	2.0%
• Detector calibration	<1%	1.5%
 ◆ On-line → Off-line transfer 		1.0%
• L non-linearity (high L)	<1%	
TOTAL	<5%	~10%

ε_{clc} from CLC simulations

$$\sigma_{inel} \sim 61.9 \pm 1.4 \, \text{mb} \qquad \sigma_{h} \sim 44.5 \pm 1.3 \, \text{mb} \qquad \text{hard core} \\ \sigma_{d} \sim 10.3 \pm 0.5 \, \text{mb} \qquad \text{diffractive} \\ \sigma_{dd} \sim 7.0 \pm 0.5 \, \text{mb} \qquad \text{double diffractive} \\ \sigma_{el} \quad \text{(0 acceptance)} \qquad \sigma_{el} \quad \text{(0 acceptance)}$$

- ☐ From CLC MC simulation alone (MBR):

$$\varepsilon^h = 88.6 \%$$
 (Run I BBC ~99%, Run I D0 ~97%) $\to \delta \varepsilon < 2.5\%$

$$\varepsilon^d = 9.1 \%$$

$$\varepsilon^{dd} = 31.8 \%$$

$$\mathcal{E}_{clc}$$

$$\mathcal{E}_{clc} \sim 68 \% \pm ?$$

$$\sigma_{clc} = \sigma_{in} \cdot \varepsilon_{clc} \sim 42 \text{ mb}$$

Q: How accurately we know $\, {\epsilon}_{\alpha} \,$ from simulation ?

$\epsilon_{\rm clc}$ from CLC+plug simulation and data

Measure CLC acceptance using a reference detector ($\varepsilon_h \rightarrow 100\%$) Then expect uncertainty in ε_{clc} $\delta \varepsilon_{\rm clc} \sim (1 - \varepsilon_{\rm h}) \dots$

$$\mathcal{E}_{clc} = \left(\frac{N_{clc}}{N_R}\right) \cdot \mathcal{E}_{_R}$$
 Measure experimentally Find from simulation

- From simulations: CLC + PLUG (Eplug>3GeV):
 - ✓ west OR east $(\varepsilon_h \sim 100\%, \varepsilon_R \sim 94\%)$

From data (west OR east):
$$N_{clc}/N_R \sim 67\%$$
 -> affected by losses

$$\mathcal{E}_{clc} \sim 63 \%$$

$$\varepsilon_{clc} \sim 63 \%$$
 $\sigma_{clc} = \sigma_{in} \cdot \varepsilon_{clc} \sim 39 \text{ mb}$

 \square ~8 % difference with the CLC simulation (ε_{clc} ~68%).

Summary: <10% uncertainty for now

Towards $\delta \varepsilon < 2\%$ uncertainty

- > Simulation only (work in progress)
 - **✓** CLC is well understood and well calibrated
 - **✓** not sensitive to the most of nasty background (soft, neutrons, ...)
 - \checkmark Need work to play with simulation parameters to find $\delta arepsilon$

- > CLC+Plug reference detector (work in progress)
 - ✓ East & West coincidence → suppress losses with ToF
 - ✓ Still large acceptance: $\varepsilon^h = 97.5 \%$, $\varepsilon^d = 20.5 \%$, $\varepsilon^{dd} = 44.5 \%$
 - **✓** Need understanding of plug simulation

Syst. Uncertainty due to amplitude calibration

Detector instability is corrected with the amplitude calibration

Measuring Luminosity at High Lum

Data:

Construct bunch crossings with large μ superimposing zero bias events at low μ .

Counting of hits:

<number> of hits/BC

Counting of "particles": Total amplitude / Ao Ao = amplitude of single particle peak

Precise high luminosity measurement is feasible!

Luminosity with W→lep,nu

- □ Cross-section @ 1.96 TeV = 2.6 nb with ~5% theoretical uncertainty (Ellis & Stirling & Webber)
 - PDF, EWK param, scale variatic higher order corrections
- Expected rate @L=2 10³² ~ 0.5Hz
- □ Trigger+selection efficiency ~25%
- Not trivial:

$$N_{W} = L \cdot \sigma(p\overline{p} \to WX) \cdot B(W \to e \, \nu) \cdot \varepsilon_{\mathbb{E}t} \cdot \varepsilon_{E_{T},\eta} \cdot \varepsilon_{Trk} \cdot \varepsilon_{P_{T}} \cdot \varepsilon_{Iso} \cdot \varepsilon_{ID} \cdot \varepsilon_{Event} \cdot \varepsilon_{Trig}$$

🕽 + backgrounds ...

Luminosity with W's

- > Goal:
 - →cross-check CLC luminosity
 - → Yield smaller systematic uncertainties
- > Lum group efforts:
 - > Pursue "standard" analysis (W+X)
 - ✓ detailed analysis of systematic errors
 - >Find simpler and better selection criteria
 - ✓ Choice of lepton
 - ✓ Simple particle ID
 - ✓ Low background
 - ✓ try measurement of W+0jet
- ➤ Working closely with the Electron Task Force

$W \rightarrow e_V + X$

- > Stream B high-Et electrons (bhel01)
- > Filesets CA5486.* & CA65627.*
- > Selection criteria:
 - Central Et electron > 20 GeV
 - *Track Pt > 10 GeV*
 - Met > 20 GeV
 - ~Standard electron ID
 - Pythia + full sim for geom+kin accept.
 - Z→e,e for electron ID + track efficiency
- > No corrections applied
- > Efficiency very close to Run I
- > Integrated L=5.3pb-1 (from CLC)

	_
Selection	Efficiency %
Geom + Kin (MC)	32.0 (1.0)
Track finding (data)	99.2 (0.8)
Track Pt (MC)	97.8
Ele ID (data)	81.5 (2.7)
Trigger (estimate)	97 (2)
Total	24.5 (1.2)

Towards absolute normalization

$$L = \frac{N_W - N_B}{\sigma_w \mathcal{E}_w}$$

 $dL/L \sim 10\%$

$$N_W = 3863$$
 (after selection cuts)

$$>N_B=322$$
 (background: QCD only)

$$> \sigma_W = 2.6 \ nb \ (5\%)$$

$$\triangleright \varepsilon_W = 24.5\% \ (5\%)$$

 $670 \ Ws/pb^{-1}$

 $W_{1,2}$ = two different electron ID cuts

Stability of W/Z counting

(with no corrections)

collaboration meet 05/31/02

Official Luminosity Web Page

Access from cdf/internal → physics in progress → Luminosity: http://cdfsga.fnal.gov/internal/physics/physics.html

- ►Instantaneous and Integrated L
- **≻Online and Offline L**
- >L access for datasets
- >Luminosity reconstruction and corrections
- Documentation and references

Summary and plans

- ☐ Established Lum measurements and accounting
 - ◆ Off-line L reconstruction coming soon
- □ CLC luminosity uncertainty at the 10% level
- ☐ Working on nailing down the systematic errors
 - Generator, Simulation, material, thresholds, etc. etc.
- ☐ Achieve absolute normalization uncertainty below 5%
- ☐ Implement and test high luminosity algorithms later on
- ☐ Working with W's for cross-checks
- ☐ Resolve the problem of PMTs gain instability
 - Strong effort in calibrations and operations
 - ◆ Replace PMTs with more robust ones

PMT gain stability

menko

conaporation meet 05/31/02